VII-я Всероссийская дистанционная ученическая конференция

Центр дистанционного образования "Эйдос"

муниципальное общеобразовательное  учреждение
Агинская  средняя общеобразовательная школа №2

Солнечная энергетика. реальность и перспективы

 

Центр дистанционного образования «Эйдос»

«Солнечная энергетика. реальность и перспективы»

Исследовательский реферат

Выполнил: Перлов Сергей Александрович,  учащийся 8 А класса АСОШ №2

Домашний адрес участника: Красноярский край, Саянский район, село Агинское, улица 50 лет Победы, дом 11, индекс 663580, тел 89620660696. Дата рождения: 02.06.1996

Адрес школы: Красноярский край, Саянский район, село Агинское, улица Строительная 21-а. Индекс 663580.

 Руководитель: Салий Елена Витальевна, учитель географии АСОШ №2, с. Агинское.

Web-адрес, по которому размещена работа:Mif106.narod.ru

 

Почему я выбрал эту тему

Общепризнано, что основным фактором развития цивилизации является использование источников энергии. Сегодня уже никто не оспаривает выдвинутый наукой тезис: углеродные ресурсы истощаются, и если поиск альтернативных источников энергии не увенчается успехом, то перспективы нашей цивилизации, мягко говоря, невелики. Из возможных "преемников", которые могут подхватить эстафету у традиционной энергетики, наиболее привлекательно среди альтернативных источников выглядит энергия Солнца, экологически чистая уже потому, что миллиарды лет поступает на Землю и все земные процессы с ней свыклись. Поток солнечной энергии люди просто обязаны взять под свой контроль и максимально использовать, сохраняя тем самым неизмененным уникальный земной климат.

Рефлексия

 В ходе моей работы я работал с разными источниками информации, в основном из  Интернетом. Путём изучения, анализа, дополнения информации при изучении разных источников, я выполнил реферат. Я узнал- сколько может стоить обеспечение солнечной энергией потребностей моего дома.

Самооценка: Моей целью было выявить современный уровень развития солнечной энергетики и  перспективы  её развития.  Выполняя работу, узнал что для изготовления солнечных батарей используют кремний, узнал о перспективах солнечной энергии и о её истории. Я научился находить информацию, работать с ней. Так как, я работаю в рамках НОУ первый раз, то  я  доволен тем, что смог выполнить реферат по интересующей меня теме. . Я буду продолжать работу и в следующий раз постараюсь добиться  лучших результатов.

Цель: выявить современный уровень развития солнечной энергетики и  перспективы  её развития.

Задачи:

§     найти и проанализировать источники информации

§     определить основные направления развития солнечной энергетики

§     выявить основные направления развития солнечной энергетики в России и крае

§     выявить перспективы развития

Актуальность темы:

Общепризнано, что основным фактором развития цивилизации является использование источников энергии. В основном мы используем традиционные энергоресурсы, такие как - нефть, уголь, природный газ. При этом наносится колоссальный ущерб экологии нашего общего дома под названием ЗЕМЛЯ. Сотни тысяч баррелей нефти сливаются в океан, миллионы тонн окиси углерода выбрасываются в атмосферу, четыре сотни АЭС вырабатывают десятки тонн радиоактивных отходов.  Сегодня уже никто не оспаривает выдвинутый наукой тезис: углеродные ресурсы истощаются, и если поиск альтернативных источников энергии не увенчается успехом, то перспективы нашей цивилизации, мягко говоря, невелики. Из возможных "преемников", которые могут подхватить эстафету у традиционной энергетики, наиболее привлекательно среди альтернативных источников выглядит энергия Солнца, экологически чистая уже потому, что миллиарды лет поступает на Землю и все земные процессы с ней свыклись. Поток солнечной энергии люди просто обязаны взять под свой контроль и максимально использовать, сохраняя тем самым неизмененным уникальный земной климат.

План работы:

1.Солнце – источник энергии

2.История развития солнечной энергетики

3.Развитие солнечной энергетики в мире

4. Развитие солнечной энергетики в России

5. Развитие солнечной энергетики в Красноярском крае

6. Перспективы развития солнечной энергетики

7.Экономическая эффективность использования солнечной энергии для  индивидуального частного дома.

1.Солнце – источник энергии

Солнце, как известно, является первичным и основным источником энергии для нашей планеты. Оно греет всю Землю, приводит в движение реки и сообщает силу ветру. Под его лучами вырастает 1 квадриллион тонн растений, питающих, в свою очередь, 10 триллионов тонн животных и бактерий. Благодаря тому же Солнцу на 3емле накоплены запасы углеводородов, то есть нефти, угля, торфа и пр., которые мы сейчас активно сжигаем. Для того чтобы сегодня человечество смогло удовлетворить свои потребности в энергоресурсах, требуется в год около 10 миллиардов тонн условного топлива (теплота сгорания условного топлива - 7 000 ккал).

Если энергию, поставляемую на нашу планету Солнцем за год, перевести в то же условное топливо, то эта цифра составит около 100 триллионов тонн. Это в десять тысяч раз больше, чем нам нужно. Считается, что на 3емле запасено 6 триллионов тонн различных углеводородов. Если это так, то содержащуюся в них энергию Солнце отдает планете всего за три недели. И резервы его настолько велики, что светиться так же ярко оно сможет еще около 5 миллиардов лет. 3емные зеленые растения и морские водоросли утилизируют примерно 34% поступающей от Солнца энергии. Остальное теряется почти впустую, расходуясь на поддержание комфортного для жизни микроклимата в глубинах океана и на поверхности Земли. И если бы человек смог взять для своего внутреннего потребления хотя бы один процент (то есть 1 триллион тонн того самого условного топлива в год), то это бы решило многие проблемы на века вперед. И теоретически вполне понятно, как именно взять этот процент.

Солнце обеспечивает нас в 10 000 раз большим количеством бесплатной энергии, чем фактически используется во всем мире. Только на мировом коммерческом рынке покупается и продается чуть меньше 85 триллионов (8,5 x 1013) кВт·ч энергии в год. Общая энергия, потребляемая человечеством в течение года, составляет только приблизительно одну семитысячную часть солнечной энергии, попадающей на поверхность Земли в тот, же период.

Солнечная энергия преобразуется в полезную энергию и косвенным образом, трансформируясь в другие формы энергии, например, энергию биомассы, ветра или воды. Энергия Солнца "управляет" погодой на Земле.

2.История развития солнечной энергетики

Многие из нас не подозревают, что способ получения электроэнергии из солнечного света известен около 130 лет. Явление фотоэффекта впервые наблюдал Эдмон Беккерель в 1839г. Это случайное открытие оставалось незамеченным вплоть до 1873г., когда Уиллоуби Смит обнаружил подобный эффект при облучении светом селеновой пластины. И хотя его первые опыты были далеко несовершенны, они знаменовали собой начало истории полупроводниковых солнечных элементов. В поисках новых источников энергии в лаборатории Белла был изобретен кремниевый солнечный элемент, который стал предшественником современных солнечных фотопреобразователей. Фотоэлектрический метод преобразования солнечной энергии, который ученые называют наиболее перспективным в долговременном развитии мировой энергетики, на самом деле - довольно стар, просто сегодня он получил новый импульс. Первая научная работа по селеновому фотоэлементу была опубликована в 1876 году, в Британии. Лишь в начале 50-х годов 20-го века солнечный элемент достиг относительно высокой степени совершенства.

На современном этапе  все началось с Альберта Эйнштейна. Многие помнят, что этот ученый был удостоен в 1921 году Нобелевской премии. Но мало кто знает, что получил он ее не за создание теории относительности, а за объяснение законов внешнего фотоэффекта. Еще в 1905 году он опубликовал работу, в которой, описал как именно и в каких количествах кванты света «вышибают» из металла электроны. Получить электрический ток с помощью фотоэффекта впервые удалось советским физикам в 30-е годы прошлого века. Произошло это в Физико-техническом институте, руководил которым знаменитый академик А.Ф. Иоффе. Правда, КПД тогдашних солнечных сернисто-талиевых элементов еле дотягивал до 1%, то есть в электричество обращался лишь 1% падавшей на элемент энергии, но задел был положен.

 В 1954 году американцы Пирсон, Фуллер и Чапин запатентовали первый элемент с приемлемым (порядка 6%) КПД.

А с 1958 года кремниевые солнечные батареи стали основными источниками электричества на советских и американских космических аппаратах. К середине 70-х годов КПД солнечных элементов приблизился к 10-процентной отметке и... почти на два десятилетия замер на этом рубеже. Для космических кораблей этого вполне хватало, а для наземного использования производство весьма дорогих солнечных батарей 11 кг кремния необходимого качества стоил тогда до 100 долларов) по сравнению с сжиганием дешевой нефти выглядело непозволительной роскошью. Как следствие-большинство исследований по разработке новых технологий в области солнечной энергетики было свернуто, а финансирование оставшихся сильно сокращено. В начале 90-х годов нынешний лауреат Нобелевской премии академик Жорес Алферов на собрании АН СССР заявил, что если бы на развитие альтернативной энергетики было бы потрачено хотя бы 15% из тех средств, что мы вложили в энергетику атомную, то АЭС нам бы сейчас вообще бы ли не нужны. Судя по тому, что даже на тех крохах, которые выделялись «на Солнце», удалось к середине 90-х поднять КПД солнечных элементов до 15%, а к началу нового века - до 20%, утверждение академика недалеко от истины.

Исторически сложилось так, что на проектирование зданий влияли местные климатические условия и доступность строительных материалов. Позднее человечество отделило себя от природы, идя по пути господства и контроля над ней. Этот путь привел к однотипному стилю зданий практически для любой местности. В 100 году н. э. историк Плиний Младший построил летний домик в Северной Италии, в одной из комнат которого были окна из тонкой слюды. Комната была теплее других, и для ее обогрева требовалось меньше дров. В известных римских банях в I-IV ст. н. э. специально устанавливались большие окна, выходящие на юг, для того чтобы больше солнечного тепла поступало в здание. К VI ст. солнечные комнаты в домах и общественных зданиях стали настолько обычны, что Джастиниан Коуд ввел "право на солнце", чтобы гарантировать индивидуальный доступ к солнцу. В XIX веке были очень популярны оранжереи, в которых было модно прогуливаться под сенью пышной растительной листвы.

Из-за перебоев с электроэнергией во время второй мировой войны к концу 1947 года в США здания, пассивно использующие солнечную энергию, пользовались таким огромным спросом, что "Libbey-Owens-Ford Glass Company" издала книгу под названием "Ваш Солнечный Дом", в которой были представлены 49 лучших проектов солнечных зданий. В середине 50-х годов ХХ века, архитектор Франк Брайдджерс разработал первое в мире пассивное солнечное здание для офисного помещения. Установленная в нем солнечная система для горячего водоснабжения работает с того времени бесперебойно. Само же здание "Брайдджерс-Пэкстон" занесено в национальный исторический регистр страны как первое в мире офисное здание, обогреваемое при помощи энергии Солнца.

Низкие цены на нефть после второй мировой войны отвлекли внимание населения от солнечных зданий и вопросов энергоэффективности. Начиная с середины 1990-х, рынок меняет свое отношение к экологии и использованию возобновляемой энергии, и в строительстве появляются тенденции, для которых характерно сочетание проекта будущего здания с окружающей природой.

3.Развитие солнечной энергетики в мире

В большинстве стран мира количество солнечной энергии, попадающей на крыши и стены зданий, намного превышает годовое потребление энергии жителями этих домов. Использование солнечного света и тепла - чистый, простой, и естественный способ получения всех форм необходимой нам энергии. При помощи солнечных коллекторов можно обогреть жилые дома и коммерческие здания или обеспечить их горячей водой. Солнечный свет, сконцентрированный параболическими зеркалами (рефлекторами), применяют для получения тепла (с температурой до нескольких тысяч градусов Цельсия). Его можно использовать для обогрева или для производства электроэнергии. Другой способ производства энергии с помощью Солнца - фотоэлектрические технологии. Фотоэлектрические элементы - это устройства, которые преобразовывают солнечную радиацию непосредственно в электричество.

Солнечная радиация может быть преобразована в полезную энергию, используя так называемые активные и пассивные солнечные системы. К активным солнечным системам относятся солнечные коллекторы и фотоэлектрические элементы. Пассивные системы получаются с помощью проектирования зданий и подбора строительных материалов таким образом, чтобы максимально использовать энергию Солнца.

В США солнечные водонагреватели общей мощностью 1400 МВт установлены в 1,5 млн. домов.  В Германии разработана новая технология прозрачной теплоизоляции зданий и солнечных коллекторов с температурой 90-50 гр.С.  При наличии такой технологии зеркал в России целесообразно массовое производство СЭС в южных районах, где имеются газопроводы или небольшие месторождения газа и прямая солнечная радиация превышает 50% от суммарной. В США существует несколько экспериментальных фотоэлектрических станций мощностью от 0,3 МВт до 6,5 МВт, работающих на энергосистему. Вторая фаза массового производства и использования СЭС в энергосистеме связана с созданием технологий и материалов, позволяющих снизить стоимость установленной мощности примерно в 5 раз, до 1-2 долл/Вт, а стоимость электроэнергии до 0,10-0,12 долл./кВт. ч. Принципиальным ограничением для такого снижения стоимости является высокая стоимость кремния солнечного качества - 40-100 долл/кг. Поэтому создание новых технологий получения кремния, обеспечивающих радикальное - на порядок - снижение его стоимости, является задачей номер один в перечне альтернативных технологий в энергетике.

Однако встречаются и более серьезные системы. Одна из таких была сооружена в США в штате Нью-Мексико еще в 1978 году и работает до сих пор. Это  Национальная солнечная установка для тепловых испытаний. Принадлежит она Пентагону и применяется для проверки жаропрочности корпусов военных и гражданских ракет. Состоит NSTTF из 60-метровой башни-мишени и 220 гелиостатов, размером 6х6 метров каждый. Зеркала, подобно архимедовой установке, направляют свои солнечные зайчики в одно полутораметровое пятнышко на верхушке установки, где температура в солнечные дни поднимается до 2 000°С. Всего в 2,5 раза меньше, чем на поверхности Солнца, и в 2 раза выше температуры горения напалма. Установка имеет площадь зеркал 8 500 м2 и тепловую мощность 5 МВт.

Существуют два основных способа преобразования солнечной энергии: фототермический и фотоэлектрический. В первом, простейшем, теплоноситель (чаще всего вода) нагревается в коллекторе (системе светопоглощающих труб) до высокой температуры и используется для отопления помещений. Коллектор устанавливают на крыше здания так, чтобы его освещенность в течение дня была наибольшей. Часть тепловой энергии аккумулируется: краткосрочно (на несколько дней) - тепловыми аккумуляторами, долгосрочно (на зимний период) - химическими. Солнечный коллектор простой конструкции площадью 1 м2 за день может нагреть 50-70 л воды до температуры 80-90°С. Использование солнечных коллекторов позволяет снабжать горячей водой многие дома в южных районах.

И все же будущее солнечной энергетики - за прямым преобразованием солнечного излучения в электрический ток с помощью полупроводниковых фотоэлементов - солнечных батарей. Еще в 30-х годах прошлого века, когда кпд первых фотоэлементов едва доходил до 1%, об этом говорил основатель Физико-технического института (ФТИ) академик А. Ф. Иоффе. Предвидение ученого воплотилось в жизнь в конце 1950-х годов с запуском искусственных спутников Земли, главным энергетическим источником которых стали панели солнечных батарей. Сейчас во всех странах мира идет активная продажа солнечных батарей.

Солнечное электричество призвано компенсировать истощающиеся запасы нефти и газа. К концу века оно будет доминирующим и, по разным оценкам, составит до двух третей всей выработки электроэнергии. Сегодня же его «взнос» в мировые энергосети более чем скромен - всего 2 ГВт (гигаватт) в год. Прогноз Еврокомиссии до 2030 года предрекает, что эта цифра достигнет 150 ГВт. Главные игроки на рынке солнечных энергосистем - Япония, Европа и США, где программы развития этого направления энергетики стали «национальными».

4. Развитие солнечной энергетики в России.

 «Солнечная энергетика стоит того, чтобы получить государственную поддержку, материальную и законодательную» - этой главной мысли было посвящено совещание Межфракционного депутатского объединения «Наука и высокие технологии», прошедшее в стенах Государственной Думы и посвященное теме «Законодательное обеспечение развития фотоэнергетики России». Совещание провел академик Жорес Алферов, вице-президент Российской академии наук, лауреат Нобелевской премии.

Чем объясняется бурное развитие солнечной энергетики в современном мире? Солнце- наша звезда, и она посылает на Землю огромные мощности, преобразование которых позволяет удовлетворять практически любые энергетические запросы человечества на многие сотни лет». Солнечная энергетика по-настоящему «чистая», и это снимает все экологические вопросы, а также решает проблемы теплового загрязнения планеты. В 1938 году в России, в лаборатории академика А. Иоффе, впервые был создан элемент для преобразования солнечной энергии. Это подвигло Иоффе предложить использовать крыши зданий для покрытия их фотоэлементами в целях получения энергии. Родившись в России, идея широко не прижилась по целому ряду причин, и главная из них - отсутствие дефицита в природных ресурсах. Однако во многих зарубежных странах «программа солнечных крыш» сегодня реализуются с размахом. В Германии она охватывает порядка 100 тысяч крыш, в  Японии - 200 тысяч, в США - до 1 миллиона крыш.  Но пригодны ли, в принципе, крыши российских домов, да и вся территория самой северной страны мира, для реализации солнечных программ? «Я проанализировал среднегодовое поступление солнечной энергии в разных частях России, сравнив его с тем, что получает Южная Европа, - сказал с трибуны совещания профессор санкт-петербургского Физико-технического института им. А.Ф.Иоффе  Вячеслав Андреев. - Результат выглядит парадоксально: на многих территориях России среднегодовое поступление солнечной энергии выше, чем в самых инсолированных частях Европы. Например, Забайкалье получает солнечной энергии больше, чем Испания».

В России в настоящее время имеется восемь предприятий, имеющих технологии и производственные мощности для изготовления 2 МВт солнечных элементов и модулей в год. В качестве примера можно привести проект солнечной электростанции в Кисловодске мощностью 1 МВт. Ее стоимость в ценах 1992 года составляет 1 млрд.руб. По оценкам экспертов , этих средств достаточно для создания в течение 3-4 лет производства солнечных элементов по новой технологии с объемом 10 МВт в год, включая производство солнечного кремния.

Сегодня на рынке солнечных энергосистем лидерами являются Япония, Европа и США, где программы развития этого направления энергетики стали «национальными». В таком статусе нуждается и российская программа развития солнечной энергетики. «Пока солнечные энергосистемы дорогостоящи, поэтому и нужна государственная поддержка, - считает Жорес Алферов. - Недостаток солнечной энергии состоит в том, что мала плотность потоков поступающей энергии». По мнению Алферова, один из путей решения проблемы - использование концентрированного солнечного излучения, что достигается с помощью фокусирующих систем. Это позволяет резко снизить стоимость дорогих полупроводниковых материалов, повысить КПД полупроводниковых преобразователей.

5. Развитие солнечной энергетики в Красноярском крае

В Красноярском крае по инициативе Росатома, Минэкономразвития и администрации Красноярского края будет создан инновационный кластер "Солнечная энергетика".  

 21 октября 2008 года премьер-министр РФ Владимир Путин поручил инициаторам проекта прояснить финансовую сторону проекта. По его словам, необходимо разработать предложения по реализации проекта в целом, а также по поискам источников финансирования. Кластер будет включать в себя цепочки инновационных наукоемких производств, конечным продуктом которой является создание солнечных батарей.

В Красноярском крае уже созданы предпосылки для реализации проекта: имеется первичное сырье - поликремний, технологии для его глубокой переработки, а также научно-технический и организационный потенциал для создания производства компонентов солнечной энергетики.  В Железногорске запущен завод по производству поликремния. Объемы производства этого технологичного сырья планируется постепенно увеличивать. Проектная мощность производства рассчитана на выпуск около 2 000 тонн поликристаллического кремния солнечного качества. Для достижения проектных объемов потребуются инвестиции в размере 35 млрд. рублей. Инвестировать в проект предполагают государственная корпорация "Росатом" и федеральное космическое агентство (Роскосмос), интерес к проекту проявили серьезные зарубежные инвесторы.

Следующим звеном кластера станет Красноярский завод цветных металлов и золота, находящийся в собственности региона. Здесь уже освоено производство следующего этапа - монокристаллического кремния.

Для завершения цепочки потребуется строительство совершенно нового высокотехнологичного предприятия, которое будет производить фотоэлементы из монокристаллического кремния и собирать конечный продукт - солнечные батареи. Это производство губернатор края предлагает разместить в портовой особой экономической зоне (ПОЭЗ), создающейся в ареоле красноярского аэропорта. Такое решение позволит более эффективно инвестировать в высокотехнологичное оборудование, которое потребуется доставить в край для создания производства, а также облегчит экспорт готовой продукции иностранным потребителям.

Проект "солнечного кластера" предполагает создание в крае 5000 высокооплачиваемых рабочих мест, главным образом, потребуется инженерно-технический персонал. Реализация проекта позволит получать 10 млрд. рублей налоговых отчислений в бюджеты всех уровней.

Главными участниками станут ГК "Росатом", ГК "Банк развития и внешнеэкономической деятельности (Внешэкономбанк)", Правительство Красноярского края, Федеральное космическое агентство (Роскосмос). Кадры для кластерных производств должен будет обеспечить Сибирский федеральный университет, одним из крупных научно-исследовательских направлений которого должна стать солнечная энергетика.Создаваемый в Красноярском крае кластер создается с учетом опыта восточногерманской Йены. Близ города находятся исследовательские и производственные центры компаний, изготавливающих солнечные батареи: "Ersol Solar Energy", "Sunways Production", "PV Crystalox Solar" - в последний год именно "зеленые" энергетические технологии стали одним из локомотивов роста немецкого биржевого индекса DAX.

6. Перспективы развития солнечной энергетики

Сегодня уже никто не оспаривает выдвинутый наукой тезис: углеродные ресурсы истощаются, и если поиск альтернативных источников энергии не увенчается успехом, то перспективы нашей цивилизации, мягко говоря, невелики. Солнце может взять на себя роль бесконечного источника энергии. Если будет найден оптимальный способ ее преобразования.

Из возможных "преемников" наиболее привлекательно среди альтернативных источников выглядит энергия Солнца, экологически чистая уже потому, что миллиарды лет поступает на Землю и все земные процессы с ней свыклись. Поток солнечной энергии люди просто обязаны взять под свой контроль и максимально использовать, сохраняя тем самым неизмененным уникальный земной климат.

Причина медленного развития солнечной энергетики проста: средний поток радиации, поступающий на поверхность Земли от нашего светила, очень слаб, например, на широте 40° он составляет всего 0,3 кВт/м2 - почти в пять раз меньше того потока, который приходит на границу атмосферы (1,4 кВт/м2). К тому же он зависит от времени суток, сезона года и погоды. Чтобы усилить поток солнечной энергии, надо собирать ее с большой площади с помощью концентраторов и запасать впрок в аккумуляторах. Пока это удается сделать в так называемой малой энергетике, предназначенной для снабжения светом и теплом жилых домов и небольших предприятий. Среди солнечных электростанций (СЭС), способных обеспечить электроэнергией, например, небольшой завод, более других распространены СЭС башенного типа с котлом, поднятым высоко над землей, и с большим числом параболических или плоских зеркал (гелиостатов), расположенных вокруг основания башни. Зеркала, поворачиваясь, отслеживают перемещение Солнца и направляют его лучи на паровой котел. Вырабатываемый котлом пар, так же как на тепловых электростанциях, приводит в действие турбину с электрогенератором. Солнечные электростанции мощностью 0,1-10 МВт построены во многих странах с "хорошим" солнцем (США, Франция, Япония). Не так давно появились проекты более мощных солнечных электростанций (до 100 МВт). Главное препятствие на пути их широкого распространения солнечных электростанций - высокая себестоимость электроэнергии: она в 6-8 раз выше, чем на ТЭС. Но с применением более простых по конструкции, а значит, и более дешевых гелиостатов себестоимость электроэнергии, вырабатываемой солнечными электростанциями, должна существенно снизиться.

Эффективность современных кремниевых фотоэлементов достаточно высока (их кпд достигает 10-20%), а чем выше кпд, тем меньше требуемая площадь солнечных батарей, которая даже в малой энергетике составляет десятки квадратных метров. Большим достижением полупроводниковой промышленности стала разработка кремниевых фотоэлементов, обладающих кпд до 40%. Последнее важное направление в развитии солнечной энергетики - создание более дешевых и удобных фотопреобразователей: ленточных поликристаллических кремниевых панелей, тонких пленок аморфного кремния, а также других полупроводниковых материалов. Самым высокоэффективным из них оказался алюминий-галлий -мышьяк, его промышленная разработка только начинается. Большую перспективу открывают гетероструктурные полупроводники, эффективность которых в два раза выше, чем простых кремниевых образцов. За открытие гетероструктур и их внедрение продолжатель работ А. Ф. Иоффе директор ФТИ академик Ж. И. Алферов получил в 2000 году Нобелевскую премию Таким образом, признанные во всем мире отечественные полупроводники - это та база, на основе которой можно успешно развивать солнечную энергетику.

За последние 15-20 лет "солнечные" дома стали расти как грибы после дождя. В самом простом и наиболее распространенном варианте большая часть энергетических потребностей такого дома обеспечивается солнечным светом и теплом, за счет чего затраты других энергоносителей снижаются на 40-60% (в зависимости от конструкции здания и его местоположения). А "солнечный" дом, оснащенный эффективной тепловой установкой, может полностью удовлетворить запросы его обитателей в тепле и свете даже без использования других источников энергии. И при этом - никаких отключений и перебоев в подаче электроэнергии, никаких проводов извне, никаких счетчиков, никаких запасов дров, угля или мазута.

Главное в концепции "солнечного" жилого дома - максимальное, исходя из особенностей местности и климата, использование солнечного излучения, превращение его в тепло и сохранение тепловой энергии в доме с наименьшими потерями. Реализация такого подхода дает значительную экономию средств и улучшает экологическую обстановку (за счет минимального применения всех других источников энергии): в атмосферу выбрасывается меньше продуктов горения, дороги освобождаются от тяжелого транспорта, перевозящего миллионы тонн топлива, леса сохраняются от вырубки на дрова и т. д. При строительстве «солнечного дома»  на 5-10% увеличивается стоимость строительства, но при этом более чем вдвое снижаются  затраты на отопление жилья.

Реализованных проектов "солнечных" домов, частично или полностью обеспечивающих себя солнечной энергией с помощью солнечных батарей, в мире довольно много. Их строят не только в теплых краях (Египет, Израиль, Турция, Япония, Индия, США) и в странах с умеренным климатом (Франция, Англия, Германия), но и во многих северных регионах (Швеция, Финляндия, Канада, Аляска). Ежегодно в западных странах вводятся сотни тысяч квадратных метров жилья в энергосберегающих "солнечных" домах. Специализированные предприятия выпускают для них оборудование и материалы, а строительством занимаются крупные фирмы, такие, например, как Concept Construction (Канада) или Enercon Building Corporation (США).

Во многих передовых странах развитие "солнечного" домостроения стало одним из направлений государственной политики. Вопросами энергосберегающего строительства занимаются ЮНЕСКО, Европейская комиссия ООН, Департамент энергии США. Создана и успешно действует всемирная организация по развитию и распространению энергетических технологий ОРЕТ. Международное общество по солнечной энергии ISES, образованное еще в 1954 году, издает журнал "Solar Energy" по вопросам усвоения и рационального использования солнечной радиации.

Особенно широко внедряются "солнечные" дома в Германии. Согласно прогнозу группы немецких ученых, уже с 2005 году начнется массовое строительство домов с тепловыми коллекторами и солнечными батареями на крышах и фасадах зданий. (По тому же прогнозу, к 2015 году число электромобилей в мире превысит число машин на бензине.) По-видимому, мы стоим на пороге бурного развития солнечной энергетики.

К сожалению, Россия в вопросе развития "солнечного" домостроения продолжает отставать от индустриального мира, хотя ее климатические условия позволяют строить "солнечные" здания во многих регионах. Еще 20 лет назад в Московском архитектурном институте был создан первый отечественный эскизный проект загородного "солнечного" дома который так и не был реализован. Впрочем, у нас долго и трудно пробивали себе дорогу многие революционные технические достижения (электроника, компьютеры, средства коммуникации).

Сегодня, правда, фронт работ по строительству "солнечных" зданий расширился. Этому способствует деятельность созданного в 1994 году в Москве "Интерсолцентра", вскоре ставшего ассоциированным членом ОРЕТ. Его задача - интеграция с ЮНЕСКО и другими международными организациями, а также мониторинг российских проектов по "солнечному" дому, включенных в Мировую солнечную программу на 1996-2005 годы. По инициативе "Интерсолцентра" и при поддержке Минтопэнерго и Министерства промышленности, науки и технологий России в 1996 году был организован Московский солнечный саммит, а в 1999 году прошли Международный конгресс и выставка "Бизнес и инвестиции в области воспроизводимых источников энергии в России".

Не так давно в Московском государственном строительном университете была разработана программа "Солнечный дом" и создан проект жилого дома "СОЛ-1" (руководитель - архитектор Т. В. Захарова), получивший золотую медаль на международной выставке "Жилище-99". В этом проекте использованы исключительно элементы пассивной системы энергосбережения: две стены Тромба, гравийные накопители тепла в полуподвальном помещении, массивные полы, перекрытия и стены. Хорошим аккумулятором тепла служат сад и теплица, расположенные на втором этаже. По расчетам, в жилище, построенном по проекту "СОЛ-1", только в зимнее время придется пользоваться дополнительными источниками тепла, расход которых сокращен на 70%. Проект наш, российский, однако первый объект по "СОЛ-1" будет построен в Германии, хотя в перспективе собираются возводить подобные дома и в южных районах России. Появился план "солнечной" деревни в Краснодарском крае. Фирма "Солнечный ветер" (г. Краснодар) и завод "Красное знамя" (г. Рязань) готовы поставить для нее солнечные модули и фотоэлементы.

Возможно, российские "солнечные" дома, особенно в сельской местности, будут больше тяготеть к деревянным конструкциям, чем на Западе, где дерево в большом дефиците. Но основная концепция энергосберегающего дома, по-видимому, должна быть единой - в Европе ли, в Америке или на необъятных просторах России. Нужна технологическая совместимость элементов "солнечного" дома, изготовляемых у нас и в других странах. Мы должны интегрироваться в зарубежное производство, иначе безнадежно отстанем и будем вынуждены покупать "солнечные" дома за границей, где уже сейчас 1 м2 гелиоколлекторов, поставляемых западными фирмами, стоит в среднем 400 долларов.

Наша страна не богата теплом. Ее не защищают от холодных арктических ветров высокие горы, не обогревают теплые океанские течения. Но у России огромная и богатая природными ресурсами территория. Солнце, хотя и не так щедро, как другим странам, дарит ей свет и тепло. Надо только научиться по-хозяйски использовать этот экологически чистый и неиссякаемый источник энергии.

Солнечная энергетика еще в самом начале пути. Ее вклад в общее мировое энергопотребление не превышает 0,1%, а среди возобновляемых источников ей принадлежит около 1%. Но технический прогресс, достигнутый в этой области за последнее десятилетие, так велик, что специалисты дают весьма оптимистические прогнозы: уже к середине XXI века солнечная энергетика наряду с другими возобновляемыми источниками (геотермальные и приливные станции, ветровые турбины и др.) может занять ведущее положение в мире.  

Энергосберегающие "солнечные" дома должны стать не только источником экономии средств, но и предметом моды". Тогда на смену сегодняшним задымленным городам придут чистые и светлые.

Чтобы понять роль и место этих новых источников энергии в будущем, полезно обратить взгляд в недавнее прошлое. В 60-е годы основой энергетики многих стран, в том числе экономически наиболее развитых, являлась нефть (в значительной мере - достаточно дешевая ближневосточная). В то время исследования в области использования НВИЭ многим казались причудой «высоколобых» интеллектуалов. Все переменилось в 1973 г. во время ближневосточного нефтяного кризиса. Вдруг стало ясно, что ориентация на импортную нефть представляет угрозу энергетической безопасности многих государств. Большинству экономически развитых стран пришлось срочно разрабатывать новую энергетическую стратегию, направленную на диверсификацию источников энергии, всемерное энергосбережение. Энергосберегающие меры были предприняты практически во всех сферах жизнедеятельности.

Во многих странах энергосбережение превратилось в предмет государственной технической политики. Появились солидно финансируемые государственные программы в данной области. Ежегодные расходы на НИОКР в сфере нетрадиционной энергетики составляют в мире не менее 1 млрд долларов.

Фотоэлектрические станции (ФЭС) идеальны для путешествий, в вариантах мобильного использования, имея ФЭС, вы можете стать энергетически независимым и наслаждаться комфортом всюду, где есть солнечный свет. При этом абсолютно бесшумно и безвредно для окружающей среды, без вредных отходов или выбросов.  Места отдыха оборудованные солнечными элементами свободны от шума и запаха дизелей. Фотоэлектрические станции могут быть применены для питания релейных радиокоммуникаций. Фотоэлектрические модули могут обеспечить катодную защиту металлоконструкций, обеспечить работу знаков водной навигации, водоподъемных установок, бытовой радиоаппаратуры, а также осуществить заряд аккумуляторных батарей для каких бы то ни было других целей. Солнечные электростанции могут быть использованы не только для решения локальных задач, но также и глобальных проблем энергетики.

В США, например, существует несколько экспериментальных ФЭС мощностью от 0,3 Мвт до 6,5 Мвт, работающих на энергосистему. Центром развития солнечной энергетики в США можно считать Сакраменто. Там фотоэлектрические панели установлены на крышах домов, зоопарка, стоянок автомобилей и даже церквей. В Европе, в частности, в Германии действует правительственная программа, предоставляющая налоговые льготы производителям солнечных батарей, монтируемых на крышах домов. Так что все человечество, а не только дачники и владельцы карманных калькуляторов, стоят на пороге важного события, смены энергетической базы. НАСТУПАЕТ ЭРА ЭНЕРГИИ СОЛНЦА!!!!!!

Экономическая эффективность использования солнечной энергии для  индивидуального частного дома.

Сегодня уже много примеров реального использования солнечной энергии  для обеспечения энергией и теплом индивидуальных домов. В Красноярском крае инженер Андрей Вербицкий для обогрева домов создал уникальные панели. С их помощью можно обогреть дом без помощи центрального отопления. По словам изобретателя, обогрев дома основан на использовании солнечной энергии, при этом затраты на отопление нулевые. Андрей Вербицкий утверждает, что солнечные батареи его конструкции могут полностью обеспечить потребности дома в отоплении.  Поступление солнечной энергии даже в зимнее время будет достаточно для теплоснабжения дома, а в дальнейшем возможно применение аккумуляторов, потому что в тёплое время солнце светить в избытке. Как доказательство изобретатель сделал батареи, которые по его технологии обогревают дом при помощи солнечной энергии. И в зимнее время температура в доме составляет 25 градусов выше нуля. Солнечные батареи, которые изобрёл Андрей Вербицкий легко установить на домах и коттеджах. Им по силам справиться с отоплением дома даже в зимний период. Инженер рассчитывает получить за своё изобретение патент, а в дальнейшем найти инвесторов для воплощения своего изобретения.

Проведем примерный расчет потребления электроэнергии в индивидуальном доме, где имеются 2 телевизора, компьютер, видеомагнитофон, компьютер, 2 холодильника, 10 шт. осветительных ламп, насос системы водоснабжения, стиральная машина, кратковременно используются мощные приборы типа утюга, чайника, электроинструмента. Энергопотребление такого дома составит около 400 кВт*ч в месяц. При расчете предполагается, что в доме используется автономные системы газового отопления и горячей воды. Это довольно роскошный дом по набору электроприборов. Для типичного среднего потребителя реальны цифры в 200-300 кВт*час и ниже. Кстати, среднестатистические данные по России указывают цифру суточного потребления электроэнергии в 3 кВт*ч, т.е. примерно 100 кВт*ч в месяц.  Для энергопотребления дома в выше приведенном примере индивидуального дома, если потребление составляет 400кВт*ч в месяц, то источник должен быть 400000/(31*24) = 533Вт.

  По различным данным из реального опыта тех, кто использует сегодня предлагаемое оборудование и продавцов данного оборудования, предлагающих как комплекты, так и элементы оборудования, стоимость всего комплекта  для среднего сельского дома может варьироваться от 40000 рублей до 200000  рублей. Если просчитать все коммунальные платежи семьи в таком доме, который отапливается за счёт центрального отопления в нашем селе, то за месяц в среднем это обходится около 5 тысяч рублей. Таким образом, если посчитать на перспективу, то в течение 2-5 лет оборудование для автономного обеспечения индивидуального дома  необходимым теплом и энергией окупится. А если проанализировать темпы развития солнечной энергетики и темпы снижения цен на данное оборудование, разнообразие предложений на современном рынке, то перспективы «солнечного» дома становятся всё более реальными и заманчивыми.

Источники информации

1.                      www.webplanet.ru

2.                      www.energycenter.ru

3.                      www.transgasindustry.com

4.                      www.promti.ru

5.                      www.h2club.mirea.ru

6.                      www.ecoteco.ru

7.                      www.rosbalt.ru

 

 

 

Сайт сделан по технологии "Конструктор школьных сайтов".
Hosted by uCoz